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Accepted 2017 September 20. Received 2017 September 15; in original form 2017 August 18

ABSTRACT

Fomalhaut A is among the most well-studied nearby stars and has been discovered to possess

a putative planetary object as well as a remarkable eccentric dust belt. This eccentric dust belt

has often been interpreted as the dynamical signature of one or more planets that elude direct

detection. However, the system also contains two other stellar companions residing ∼105 au

from Fomalhaut A. We have designed a new symplectic integration algorithm to model the

evolution of Fomalhaut A’s planetary dust belt in concert with the dynamical evolution of

its stellar companions to determine if these companions are likely to have generated the dust

belt’s morphology. Using our numerical simulations, we find that close encounters between

Fomalhaut A and B are expected, with an ∼25 per cent probability that the two stars have

passed within at least 400 au of each other at some point. Although the outcomes of such

encounter histories are extremely varied, these close encounters nearly always excite the

eccentricity of Fomalhaut A’s dust belt and occasionally yield morphologies very similar to

the observed belt. With these results, we argue that close encounters with Fomalhaut A’s

stellar companions should be considered a plausible mechanism to explain its eccentric belt,

especially in the absence of detected planets capable of sculpting the belt’s morphology. More

broadly, we can also conclude from this work that very wide binary stars may often generate

asymmetries in the stellar debris discs they host.

Key words: methods: numerical – planets and satellites: dynamical evolution and stabil-

ity – planet–disc interactions – binaries: visual – circumstellar matter – stars: kinematics and

dynamics.

1 IN T RO D U C T I O N

The Fomalhaut star system has held the interest of planetary as-

tronomers for decades. Beginning in the 1980s, the main star of

the system, Fomalhaut A, was found to have an infrared excess,

indicating the existence of a significant amount of circumstellar

dust (Aumann 1985; Gillett 1986; Backman & Paresce 1993). Sub-

millimetre observations in the next decade suggested that this star’s

dust disc was actually a belt with a large inner cavity of radius ∼100

au (Holland et al. 1998; Dent et al. 2000), although newer observa-

tions also indicated another less massive dust source 8–15 au from

the star (Stapelfeldt et al. 2004; Su et al. 2013, 2016). Hubble Space

Telescope (HST) observations of the outer dust belt in optical light

then revealed that this outer dust belt had a very well-defined inner

edge and that the centre of the belt was offset from Fomalhaut A,

implying that the belt’s morphology traced the shape of a moder-

ately eccentric orbit (Kalas, Graham & Clampin 2005). Subsequent

observations of the belt in millimetre, sub-millimetre, infrared and

� E-mail: nathan.kaib@ou.edu

visible light have confirmed that the belt indeed has sharply defined

inner and outer edges and has a coherent eccentricity of 0.12 ± 0.01,

indicating its source population has a high degree of apsidal align-

ment (Acke et al. 2012; Ricci et al. 2012; MacGregor et al. 2017;

White et al. 2017).

Because of the outer belt’s sharp inner edge and non-circular

morphology, it has been suspected that Fomalhaut A possesses at

least one planet that is gravitationally sculpting the belt’s morphol-

ogy. Secular forcing from a planet orbiting interior to the belt’s

inner edge can drive the belt to a coherent moderately eccentric

shape (Wyatt et al. 1999; Kalas et al. 2005, 2008; Quillen 2006;

Chiang et al. 2009). Indeed, when Kalas et al. (2008) announced

the discovery of a small visible point source orbiting interior

to the belt, it was presumed that this was the planet responsible

for the belt’s morphology. However, failures to detect the object

in the infrared raised doubts about the object’s mass as well as

its planetary nature (Marengo et al. 2009; Currie et al. 2012; Jan-

son et al. 2012). Further HST observations of the point source at

later epochs revealed it to actually be on a highly eccentric orbit

incapable of generating the belt’s morphology (Kalas et al. 2013;

Beust et al. 2014). Moreover, a massive planet on such an orbit
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Simulations of the Fomalhaut system 471

would quickly disrupt belt’s coherent shape (Kalas et al. 2013;

Beust et al. 2014; Tamayo 2014). Given this, it has since been spec-

ulated that it may be a lower mass planet with a large ring system

(Kalas et al. 2008), a lower mass planet with an irregular satellite

dust cloud (Kennedy & Wyatt 2011; Tamayo 2014), a post-collision

dust cloud (Kalas et al. 2013; Tamayo 2014; Lawler, Greenstreet &

Gladman 2015), or even a background neutron star (Neuhäuser

et al. 2015).

Thus, the detected point source near Fomalhaut A does not seem

to be responsible for the belt’s morphology. Furthermore, it has

recently been shown that there is not enough mass in a gaseous

component to explain the belt’s eccentricity via gas–dust interac-

tions (Cataldi et al. 2015). It may be that an undiscovered planet or

planets capable of driving the belt’s morphology still reside interior

to the ring and could even be scattering the detected object on to an

extreme orbit (Chiang et al. 2009; Tamayo 2014). Another possibil-

ity is that a tandem of shepherd planets may reside on each side of

the belt driving it into a coherent ellipse (Boley et al. 2012). Such

planets could have masses as low as a few M⊕ and easily evade

detection (Boley et al. 2012).

In addition to the main star, its belt and the possible planetary

body, the Fomalhaut system possesses other known members. As

far back as 1938, the K4Ve star TW PsA was suspected of being

a binary companion (Luyten 1938). More recent analysis of the

positions, kinematics and properties of Fomalhaut A and TW PsA

finds it exceedingly unlikely that the pair are unassociated field

stars (Mamajek 2012). Instead presumably, the two stars comprise

a bound pair separated by 5.74 × 104 au (Barrado y Navascués

et al. 1997; Mamajek 2012). Even more recently, a third star, LP

876-10, was identified near Fomalhaut A and TW PsA with similar

kinematics, and the probability of it being a field interloper is only

∼10−5 (Mamajek et al. 2013). This third star is an M dwarf sitting

1.58 × 105 au from Fomalhaut A and 2.03 × 105 from TW PsA,

and it is also presumably a bound member. Herschel observations

of LP 876-10 have revealed that it also possesses a debris disc, a

relatively rare occurrence for M dwarfs (Kennedy et al. 2014). For

the remainder of this work, we will refer to TW PsA and LP 876-10

as Fomalhaut B and C, respectively.

Most of the dynamical analysis of the Fomalhaut A system has

largely ignored any possible influence exerted by these lower mass

stellar companions. The rationale behind this is likely that the stars

are inconsequential because their separations are 2–3 orders of mag-

nitude greater than the radius of Fomalhaut A’s belt. However, with

such large separations, the orbits of these stars are strongly per-

turbed by the Galactic tide and impulses from other passing field

stars (Heisler & Tremaine 1986; Heisler, Tremaine & Alcock 1987;

Kaib, Raymond & Duncan 2013). Under these perturbing forces

the stellar orbits will cycle through different eccentricities and in-

clinations. Thus, it is far from assured that Fomalhaut A’s stellar

companions have never strongly interacted with it.

One recent work that has not discounted the possible role of

Fomalhaut A’s stellar companions is that of Shannon, Clarke &

Wyatt (2014). Seeking to explain the current stellar configuration as

well as the eccentricity of Fomalhaut’s belt, Shannon et al. (2014)

suggested that the Fomalhaut star system originally formed with

Fomalhaut A and C comprising a wide binary of ∼104 au separation,

while Fomalhaut B orbited at a much larger (∼105 au) separation.

Under this scenario, as Fomalhaut B’s orbit varies due to the Galactic

tide, it usually has close encounters with C, eventually leading to

C’s ejection while B transitions to a somewhat smaller separation

from A (∼104−5 au) due to conservation of energy. During this

process, the belt of Fomalhaut A can be transformed from a roughly

circular state to a reasonably eccentric one due to close passages of

Fomalhaut A’s stellar companions during the reshuffling of stars.

Although Shannon et al. (2014) demonstrated that Fomalhaut

A’s stellar companions can excite the eccentricity of its belt, this

mechanism relies on a dynamical instability among the stellar orbits

that in turn depends on initial conditions that look markedly different

from the current stellar configuration. Moreover, this mechanism

requires that we are observing the stellar system in a transient state of

disruption. Such states are relatively short-lived and after hundreds

of Myr of evolution only ∼1 per cent of these simulated systems

should have stellar separations consistent with observations.

However, it may be possible that Fomalhaut A’s companions

have not yet passed through an instability. In spite of the system’s

huge stellar separations, its self-gravity is strong enough to prevent

it from being directly stripped apart by the Galaxy’s tide (Jiang &

Tremaine 2010; Mamajek et al. 2013). In addition, even through the

ratio of stellar separation distances is small, a subset of stellar orbital

parameters should allow Fomalhaut B and C to avoid catastrophic

scattering events for time-scales longer than the system’s current

age (Holman & Wiegert 1999; Mamajek et al. 2013). Thus, while

the current stellar configuration can become unstable at some point,

it may have existed in a meta-stable configuration since its birth

with a dynamical lifetime longer than 500 Myr (the system age).

In such a meta-stable state, it may also still be possible for

the stellar companions to strongly perturb the belt of Fomalhaut

A. The precession cycling time-scale of Fomalhaut B due to C

should be at least as long as that due to the Galactic tide (Heisler &

Tremaine 1986; Beust & Dutrey 2006). As a result, we expect the

evolution of Fomalhaut B’s orbital eccentricity to be very complex

even before considering the random perturbations arising from en-

counters with other passing field stars (e.g. Rickman 1976). Under

such complex evolution, it is possible that the periastron of Foma-

lhaut B may have attained very low values at one or more times,

allowing Fomalhaut B to pass near enough to the belt of Fomalhaut

A to alter its morphology. Thus, even if we take the simplest as-

sumption that the mean stellar separations have always been similar

to those observed today, it seems quite possible that Fomalhaut B

(or C) could potentially excite the eccentricity of its belt.

Given the still open question of the mechanism behind Fomal-

haut A’s eccentric belt, this work will further explore whether its

observed state can be an expected outcome of the system’s stellar

dynamics. Our work is organized into the following sections. In

Section 2, we describe the new symplectic routine we have devised

to efficiently model planetary dynamics in the presence of three or

more stellar mass objects. Following this, we describe the details

of our simulations modelling the evolution of the Fomalhaut sys-

tem. In Section 3, we describe the results of our numerical work,

detailing the rate that we generate belt morphologies comparable

to the observed one and the requirements for doing so. Finally in

Section 4, we summarize our work and draw conclusions about the

nature of Fomalhaut A’s belt and the dynamical history of the sys-

tem. Also included are two appendices that derive our integration

coordinates and quantify the numerical errors of our algorithm.

2 N U M E R I C A L M E T H O D S

2.1 Algorithm design

Because of their numerical error-conserving properties while em-

ploying large integration step sizes, mixed variable symplectic al-

gorithms are well suited for numerically modelling the long-term

dynamics of planetary systems. However, symplectic modelling of
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472 N. A. Kaib, E. B. White and A. Izidoro

the dynamics of the Fomalhaut system is a distinctly challenging

numerical problem. In this system we have belt particles, which

follow near-Keplerian orbits in the absence of strong perturbations,

as well as three stellar objects. An optimal approach for integrating

belt objects and Fomalhaut A is the classical mixed variable sym-

plectic scheme pioneered by Wisdom & Holman (1991). However,

complications arise once we consider a planetary system with a

stellar mass companion, since the premise of planetary symplectic

integrators is that a system is dominated by a single massive body.

To handle such a scenario, Chambers et al. (2002) devised a

symplectic algorithm that can integrate a planetary system along

with one distant binary star. In this scheme, planetary bodies (belt

objects in our case) are integrated in democratic heliocentric coor-

dinates (Duncan, Levison & Lee 1998) about the primary star, while

the wide binary is integrated about the centre-of-mass of the sys-

tem. Using these two reference frames, the binary star is effectively

drifted on a Keplerian orbit about the system’s centre-of-mass, and

kicks due to interactions with the planetary system are applied to

each time-step. In such a scheme, the coordinates of the bodies (X)

as a function of the inertial coordinates (x) are

XA =
mAxA + mB xB +

∑

j mj xj

mA + mB +
∑

j mj

,

X i = xi − xA,

XB = xB −
mAxA +

∑

j mj xj

mA +
∑

j mj

, (1)

where the subscripts A and B refer to the primary and secondary

stars, respectively, and all other subscripts correspond to planetary

objects orbiting the primary. Similarly, the conjugate momenta in

this scheme (P) can be written in terms of the inertial conjugate

momenta ( p) as

PA = pA + pB +

N
∑

j=1

pj ,

P i = pi − mi

pA +
∑

j pj

mA +
∑

j mj

,

PB = xB − mB

pA + pB +
∑

j pj

mA + mB +
∑

j mj

. (2)

While the Chambers et al. (2002) algorithm is well suited for hi-

erarchical systems with two stars, it is still unable to handle systems

with 3+ stars. In these star systems, it is less clear what the optimal

choice of coordinates for the tertiary star (and beyond) is. Algo-

rithms for planetary integrations within hierarchical systems exist

in which the additional stars are integrated in Jacobian coordinates

(Beust & Dutrey 2004; Verrier & Evans 2007). However, stellar

trajectories diverge further and further from Keplerian as the num-

ber of stellar objects increases, and Jacobian integrations are known

to break down if close encounters or dynamical reorganization of

the system hierarchy occurs (Duncan et al. 1998). Fortunately, im-

plementing a sophisticated coordinate scheme (and Hamiltonian

partitioning) may not be necessary for symplectic integrations of

the stars. The reason for this is that the simulation time-step of a

symplectic integration is set by the shortest planetary orbital period

in the system. For extended hierarchical stellar systems, the time-

scale set by the planetary orbits should typically be vastly shorter

than the dynamical time-scale of the stellar motions.

While modelling the capture of Oort cloud comets within a star

cluster, Levison et al. (2010) exploited this fact and just integrated

cluster stars using a simple T + V leapfrog approach that operated

in inertial coordinates. In Levison et al. (2010) all objects includ-

ing comets were integrated with this T + V scheme. While this

scheme retained the ability to accurately integrate close encounters

(a shortcoming of many symplectic routines), the universal choice

of inertial coordinates for all bodies required sacrificing the abil-

ity to efficiently integrate planetary bodies assuming near-Keplerian

trajectories. This is in contrast to codes such as SYMBA and MERCURY,

whose democratic heliocentric coordinates enable rapid planetary

integrations and accurate close encounter integrations, but cannot

handle more systems with more than two stellar objects (Duncan

et al. 1998; Chambers 1999; Chambers et al. 2002).

However, with a simple modification to equations (1) and (2) we

can use the Levison et al. (2010) strategy for distant stellar inte-

grations while retaining the advantages of democratic heliocentric

coordinates for integrations of bodies in orbit about the primary

star. In our new approach, the coordinate system of Chambers et al.

(2002) becomes

XA =

mAxA + mB xB +
NP
∑

j=1

mj xj

mA + mB +
NP
∑

j=1

mj

,

X i = xi − xA for 1 ≤ i ≤ NP,

XB = xB −

mAxA +
NP
∑

j=1

mj xj

mA +
NP
∑

j=1

mj

,

X i = xi for NP < i ≤ NP + NS, (3)

where NP is the number of planetary bodies orbiting the primary and

NS is the number of additional stellar bodies beyond the primary

and secondary stars. Subscripts from 1 to NP refer to planetary mass

bodies orbiting the primary, while subscripts above NP refer to stellar

mass bodies beyond the primary and secondary stars (which are still

represented with subscripts A and B, respectively). Thus, we have

simply left the additional stars’ coordinates in inertial coordinates,

while all other bodies use the same coordinates as Chambers et al.

(2002).

Using the generating function detailed in Appendix A, we find

that the canonical conjugate momenta for our new coordinates are

PA = pA + pB +

NP
∑

j=1

pj ,

P i = pi − mi

pA +
NP
∑

j=1

pj

mA +
NP
∑

j=1

mj

for 1 ≤ i ≤ NP,

PB = xB − mB

pA + pB +
NP
∑

j=1

pj

mA + mB +
NP
∑

j=1

mj

,

P i = pi for NP < i ≤ NP + NS. (4)

With our new coordinates, we can define two useful positions.

The first is the position of the barycentre of primary’s planetary

MNRAS 473, 470–491 (2018)
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system relative to the primary star’s position:

s =

NP
∑

i=1

mi X i

mA +
NP
∑

i=1

mi

(5)

and the second is the primary star’s position in inertial coordinates

(expressed in our new coordinates):

� = XA −

NP
∑

i=1

mi X i + mB (XB + s)

mA + mB +
NP
∑

i=1

mi

. (6)

This small addition to the Chambers et al. (2002) work allows us

to split the Hamiltonian into the following terms

H = HKep + Hint + Hjump + TS + VS (7)

where

HKep =
P 2

B

2μbin

−
Gμbin

RB

(

mA + mB +

NP
∑

i=1

mi

)

+

NP
∑

i=1

(

P 2
i

2mi

−
GmAmi

Ri

)

,

Hint = −

NP
∑

i=1

NP
∑

j>i

Gmimj

Rij

+ GmBmA

(

1

RB

−
1

|XB + s|

)

+ GmB

NP
∑

i=1

mi

(

1

RB

−
1

|XB − X i + s|

)

−

NP
∑

i=1

NP+NS
∑

j=NP+1

Gmimj
∣

∣X i − Xj + �
∣

∣

−

NP+NS
∑

i=NP+1

GmBmi

|XB − X i + � + s|
−

NP+NS
∑

i=NP+1

GmAmi

|X i − �|

Hjump =
1

2mA

∣

∣

∣

∣

∣

NP
∑

i=1

P i

∣

∣

∣

∣

∣

2

,

TS =

NP+NS
∑

i=NP+1

P 2
i

2mi

,

VS = −

NP+NS
∑

i=NP+1

∑

j>i

Gmimj

Rij

. (8)

This splitting of the Hamiltonian allows a planetary system with

an arbitrary number of stellar companions to be integrated symplec-

tically, with a Wisdom—Holman-like mixed variable symplectic

scheme still employed for the secondary star and planetary mass

bodies orbiting the primary. For all other stellar bodies, the integra-

tion amounts to a simple T + V scheme. The integration kernel for

a single time-step, τ , is as follows:

(i) Advance Hint + VS for τ/2

(ii) Advance Hjump for τ/2

(iii) Advance HKep + TS for τ

(iv) Advance Hjump for τ/2

(v) Advance Hint + VS for τ/2.

Thus, we have devised a routine that extends the advantages of

mixed variable symplectic integrations of planetary motion to sys-

tems containing three or more stars.

Because of the appearance of � and s terms (which are both

functions of many bodies’ coordinates) in equation (8), the actual

accelerations associated with Hint are quite complicated. For in-

stance, the acceleration of planetary body k due to Hint is

dvu,k

dt
= −

1

mk

∂Hint

∂Xk

= −

NP
∑

i �=k

Gmi

R3
ik

(Xk − Xi)

−
GmAmB

mA +
NP
∑

i=1

mi

XB + su

|XB + s|3

−
GmB

mA +
NP
∑

i=1

mi

NP
∑

i=1

mi

XB − Xi + su

|XB − X i + s|3

+ GmB

XB − Xk + su

|XB − Xk + s|3

−

NP+NS
∑

i=NP+1

Gmi

Xk − Xi + �u

|Xk − X i + �|3

+
1

mA +
NP
∑

i=1

mi

NP
∑

i=1

NP+NS
∑

j=NP+1

Gmimj

Xi − Xj + �u
∣

∣X i − Xj + �
∣

∣

3

−
GmA

mA +
NP
∑

i=1

mi

NP+NS
∑

i=NP

mi

Xi − �u

|X i − �|3
. (9)

Note that since ∂�
∂Xk

= − ∂s
∂Xk

for all k, indirect accelerations on the

planetary bodies due to interactions between the additional stars

and the secondary star are zero. The acceleration of the secondary

star due to Hint is similarly tedious

dvu,B

dt
= GmA

(

XB

|XB |3
−

XB + su

|XB + s|

)

+ G

NP
∑

i=1

(

mi

XB

|XB |3
−

XB − Xi + su

|XB − X i + s|3

)

+
1

mA + mB +
NP
∑

i=1

mi

NP
∑

i=1

NP+NS
∑

j=NP+1

Gmimj

×
Xi − Xj + �u

∣

∣X i − Xj + �
∣

∣

3

−

mA +
NP
∑

i=1

mi

mA + mB

NP
∑

i=1

mi

NP+NS
∑

i=NP+1

Gmi

XB − Xi + �u + su

|XB − X i + � + s|3

−
GmA

mA + mB +
NP
∑

i=1

mi

NP+NS
∑

i=NP

mi

Xi − �u

|X i − �|3
. (10)

In practice, when we simulate the Fomalhaut system we find it

preferable to treat all non-primary stars as additional stars and leave

the special coordinate and momentum reserved for the secondary

empty (see Appendix B). For reasons of completeness and potential

future use we still include the treatment of a ‘special’ secondary

star in our algorithm description.
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D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

7
3
/1

/4
7
0
/4

2
0
9
9
8
5
 b

y
 O

k
la

h
o
m

a
 S

ta
te

 U
n
iv

e
rs

ity
 (G

W
L
A

) u
s
e
r o

n
 0

5
 M

a
rc

h
 2

0
1
9
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2.1.1 Galactic tide

Because of the enormous separations of Fomalhaut’s stellar com-

panions, our code must include perturbations from the Milky

Way. To do this, we model the Galactic disc as a slab of density

ρ0 = 0.1 M� pc−3 (Duncan, Quinn & Tremaine 1987; Holmberg &

Flynn 2000). This generates a galactic tide that is dominated by a

vertical term relative to the Galactic plane, which leads to additional

potential terms in our system:

Vgal = 2πGρ0

[

mA�2
z + mB

(

Xz,B + sz + �z

)2

+

NP
∑

i=1

mi

(

Xz,i + �z

)2
+

NP+NS
∑

i=NP+1

miX
2
z,i

]

. (11)

Thus, the potential of the Galaxy’s disc produces accelerations on

planetary bodies of

dvz,k

dt
= −4πGρ0

(

Xz,k + �z

)

+
4πGρ0

mA +
NP
∑

i=1

mi

×

[

mA�z +

NP
∑

i=1

mi

(

Xz,i + �z

)

]

. (12)

Similarly, the acceleration on the secondary due to the Galactic

potential [if employing the Chambers et al. (2002) secondary coor-

dinates] is

dvz,k

dt
= −

4πGρ0

mA + mB +
NP
∑

i=1

mi

[(

mA +

NP
∑

i=1

mi

)

×
(

Xz,B + sz + �z

)

− mA�z −

NP
∑

i=1

mi

(

Xz,i + �z

)

]

. (13)

Meanwhile, the acceleration on any additional stars in the system

is just

dvz,k

dt
= −4πGρ0Xz,i . (14)

2.1.2 Field star passages

We must also account for perturbations by passing field stars. We

do this with the stellar passage prescription of Rickman et al. (2008)

where encounter rates of various spectral classes of stars are set by

the locally observed density and velocity dispersion of each class.

Rather than employing the impulse approximation to model the

effects of each stellar passage (Rickman 1976), we directly integrate

the passages. Each stellar passage is initiated 4 pc away from the

Fomalhaut centre-of-mass, and the passing star is followed until its

distance from the centre-of-mass again exceeds 4 pc, at which point

it is removed from the simulation. As with our other stellar objects,

passing field stars are integrated with a T + V approach in inertial

coordinates. On average, our systems undergo 309 stellar passages

within 4 pc every 1 Myr.

2.1.3 Close encounters between bodies

One advantage of the democratic heliocentric coordinates used for

the integration of planetary bodies is that the close encounters

between planetary objects can be accurately integrated (Duncan

et al. 1998). In Duncan et al. (1998) this is accomplished by in-

cluding high-frequency force terms in Hint that are integrated on

very small time-steps but disappear at large separations between

planetary bodies. On the other hand, Chambers et al. (2002) ac-

curately handles close encounters by taking the terms of Hint that

involve the encountering bodies i and j and smoothly transferring

those terms to HKep as the distance between bodies i and j decreases.

When this transfer begins HKep ceases to be analytically integrable,

and a Bulirsch–Stoer integrator must be employed to integrate HKep

during times of close encounters (Stoer & Bulirsch 1980).

If our multi-star systems are in an unstable configuration, it may

be necessary to integrate close encounters between stars as well.

In this instance, we adopt the approach of Chambers (1999) and

smoothly switch the encountering terms in VS over to TS with the

same changeover function as Chambers (1999). During the en-

counter, the TS terms involving the encountering stars i and j are

no longer analytically integrable, and the integration of these terms

is handled by a Bulirsh–Stoer integrator for the duration of the

encounter, analogous to Chambers (1999).

Of course, this encounter strategy requires specifying a criti-

cal distance between encountering stars i and j below which the

changeover from Hint to HKep begins. For planetary bodies this criti-

cal distance is typically a factor of Hill radii. However, this approach

is ill-suited to multi-star systems because the large masses and sep-

arations of the stars make the Hill radii enormous, and the stellar

motion can be quite non-Keplerian. Thus, we instead use the stellar

encounter time-scale to set the critical encounter distance. Because

we are integrating our stars with a T + V approach and T + V

orbital integrations require hundreds of steps per orbital period for

accurate integration in the planetary orbital regime, we initiate the

switchover of encounter terms if the encounter time-scale rcrit/venc

drops below 500 times the simulation time-step. In this setup, the

velocities of the stars at infinity are assumed to be small and we take

venc to be the star’s escape velocity at rcrit. For the 5-year time-steps

we use in this work, this yields an rcrit of ∼800 au.

It is important to understand the accuracy limits of our new algo-

rithm, and these limits are mostly set by close encounters between

bodies of different classes. At present, our code contains no strate-

gies to handle encounters between objects of different classes (e.g.

star–planet encounters). In Appendix B, we characterize the numer-

ical errors that arise from such events, and we demonstrate that in

spite of these limitations, our code is still quite suitable for exploring

the dynamical evolution of the Fomalhaut system.

2.2 Fomalhaut simulations

2.2.1 Stars-only simulations

To model the evolution of the Fomalhaut system, we initially per-

form 2000 simulations of just the stellar objects in the system:

Fomalhaut A with a mass of 1.92 M�, Fomalhaut B with a mass

of 0.73 M� and Fomalhaut C with a mass of 0.18 M� (Mamajek

et al. 2013). The only constraint on the stellar kinematics of the

system comes from the 3D separations between the three stars. At

present, stars A and B are separated by 5.74 × 104 au and stars A and

C are separated by 1.58 × 105 au. Because of the enormous orbital

periods and tiny orbital velocities associated with these separations,

the orbital trajectories of the stars are completely unconstrained.

Thus, we must resort to statistical arguments to choose our initial

conditions for our stars. If one assumes that wide stellar companion

orbits are drawn from a distribution that yields an isotropic ve-

locity distribution, Fomalhaut-like stellar orbits will be uniformly
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Simulations of the Fomalhaut system 475

Figure 1. Cumulative probability distribution of the semimajor axes of Fomalhaut B (solid) and Fomalhaut C (dashed). The nominal 3D separations of

Fomalhaut B from Fomalhaut A and of Fomalhaut C from the system centre-of-mass are shown with the left and right vertical dotted lines, respectively.

distributed in e2 and cos i, where e is orbital eccentricity and i is or-

bital inclination (Jiang & Tremaine 2010). Meanwhile, argument of

periastron (ω), longitude of ascending node (�) and mean anomaly

(M) should be uniformly distributed.

Using these underlying orbital element distributions, we can then

determine the semimajor axis probability function for each star

given its current separation. These distributions are shown in Fig. 1.

We see that Fomalhaut B’s semimajor axis is likely between 3 × 104

and 2 × 105 au (although arbitrarily high values are possible with

smaller and smaller likelihood). Meanwhile, the bulk of the prob-

ability distribution for Fomalhaut C’s semimajor axis lies between

8 × 104 and 6 × 105 au. It is these distributions that we sample to

assign initial orbital positions and motions to Fomalhaut B and C

at the beginning of our simulations. When translating these orbital

elements to positions and velocities, we assume that B’s orbit de-

scribes a trajectory about A, while C’s orbit describes a trajectory

about the centre-of-mass of A and B. Of course, the assumption of

orbital elements assumes that each star’s trajectory is well fitted by

a two-body solution when in reality the motion can be very non-

Keplerian in this system. Nevertheless, we find this approach yields

bound systems that continue to match the observed stellar separa-

tions for long time-scales (see Section 3). With our initial stellar

positions and velocities chosen, we next integrate the system in the

local galactic environment for 500 Myr, the approximate maximum

age estimate of Fomalhaut A (Mamajek 2012).

2.2.2 Belt simulations

Once our initial 2000 simulations that only include stars are com-

plete, we examine the final positions of the stellar components. If a

system finishes with stellar separations within ±50 per cent of the

observed Fomalhaut system (2.9–8.6 × 104 au for the AB distance,

and 0.79–2.4 × 105 au for the AC distance) we consider it a match

to the observed system. For systems that match the observed stellar

separations, their initial conditions are then reintegrated for 500 Myr

with a belt of 500 massless test particles on initially nearly circular

(e < 10−3), coplanar (i < 1◦) orbits between 127 and 143 au from

Fomalhaut A. Because we may be required to integrate the ring to

high eccentricity, we use a simulation time-step of 5 years, which

is just ∼1/200 of the smallest ring particle orbital periods. This has

the added benefit of limiting the number of encounters between

stellar companions and the primary or ring particles that degrade

the accuracy of our simulations (see Figs B1–B4 in Appendix B).

3 R ESULTS AND DI SCUSSI ON

3.1 Stability of stellar system

Using stability studies of small bodies within binary systems by

Holman & Wiegert (1999), Mamajek et al. (2013) argue that there

are many combinations of orbital eccentricities for Fomalhaut B

and C that enable the system to remain stable. However, as the

Fomalhaut system evolves, it is inevitable that its stellar orbits are

continuously altered by perturbations from the Galactic tide and

passing field stars (Heisler & Tremaine 1986). Thus, even if the

system’s stars are born on a stable orbital configuration, they may

quickly evolve to an unstable configuration (Kaib et al. 2013).

As an alternate origin hypothesis, Shannon et al. (2014) propose

that the system originally formed in a tighter configuration, with

Fomalhaut C orbiting inside of the A-B orbit. Due to star B’s orbital

variation under the Galactic tide, the system eventually destabilized,

and the ejection of C over the course of tens of Myr was initiated.

Shannon et al. (2014) argue that we are observing the system in the

process of C’s ejection. By studying the evolution of 1000 systems

that start with a compact configuration, Shannon et al. (2014) find

that ∼1 per cent of systems will have the observed stellar separations

after 400–500 Myr.

While the stellar kinematics information necessary to test the

scenario of Shannon et al. (2014) is well beyond our current obser-

vational abilities, we test a simpler scenario here: that the companion

stars have always had separations and orbits roughly consistent with
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476 N. A. Kaib, E. B. White and A. Izidoro

Figure 2. Fraction of our 2000 systems with stellar separations that are within 50 per cent of the 3D separations reported in Mamajek et al. (2013) as a function

of time.

the system’s current state. To test this, we simply start our stars with

the current separations (as described in our numerical setup) and

see how many systems retain the approximate separations over the

system’s age. We do this by plotting the instantaneous fraction of

our 2000 systems that have AB separations between ±50 per cent

of 5.74 × 104 au as well as AC separations between ±50 per cent

of 1.58 × 105 au as a function of time. This is shown in Fig. 2.

Here we see that our initial conditions cause 43.4 per cent of our

systems to begin within 50 per cent of the observed separations.

(The reason this is not 100 per cent is that our initial stellar or-

bits have non-zero eccentricities, and we randomly select the initial

mean anomalies of the stars.) As our 2000 systems evolve, the

fraction matching the observed separations steadily decreases. By

independently selecting stellar semimajor axes and eccentricity, it

is inevitable that some of our initial conditions are inherently un-

stable, but also, importantly, the cycling of stellar orbital elements

by galactic perturbations drives initially stable configurations into

instability. Typically, these instabilities lead to the ejection of star C

and a decrease in the mean AB separation due to energy conserva-

tion. Nevertheless, after 500 Myr of evolution 6.75 per cent of our

systems finish with stellar separations that are within 50 per cent of

the observed separations. Moreover, because of the cycling of mean

anomaly on eccentric orbits, we expect that many systems regu-

larly oscillate between matching and not matching the observed

separations. Indeed, ∼51 per cent of our systems possessed stellar

separations within 50 per cent of the observed values at some point

during their final 100 Myr of evolution. These fractions are signif-

icantly higher than those found in Shannon et al. (2014), and we

therefore consider it quite plausible that the Fomalhaut system has

always possessed stellar orbits comparable to those implied by its

current stellar separations.

3.2 Interactions between stellar companions

Even in the absence of external perturbations, the large sep-

aration of Fomalhaut A and B causes Fomalhaut C’s orbital

motion to be quite non-Keplerian. On the other hand, because

Fomalhaut C is substantially less massive than A and B, their

trajectories should be much closer to Keplerian orbits in the ab-

sence of perturbations. In reality, of course, the Fomalhaut system

is continually subjected to velocity impulses from passing field

stars and torques from the tide of the Milky Way’s disc. Conse-

quently, the motion of both Fomalhaut B and C (relative to A)

is distinctly non-Keplerian in our simulations. One manifestation

of this behaviour is that the distance of closest approach between

the stellar companions continually changes as the stars orbit about

one another.

In Fig. 3 we plot the distribution of the minimum approach dis-

tance recorded between Fomalhaut A and B in each of our 2000

simulations. We see here that over the course of 500 Myr, a typ-

ical system experiences at least one approach between A and B

that is much closer than that given by the Keplerian orbit ini-

tially assigned to B at the beginning of our simulations. In fact,

the median minimum approach distance between A and B for our

simulation set is 2500 au, and 24 per cent of simulated systems

recorded at least one encounter between A and B below 400 au.

These numbers are substantially more extreme than that spec-

ified by our initial conditions. The initial periastra assigned to

Fomalhaut B have a median value of 1.32 × 104 au, and only

1.6 per cent of initial periastra are under 400 au. Furthermore, the

median closest approach between Fomalhaut A and C is 9800

au, which is a factor of ∼16 smaller than their current observed

separation.

We can conclude from this that the complex dynamics of the

Fomalhaut system very often yield close approaches between stellar

companions, regardless of the system’s initial state. If we examine

Fig. B6(A) in the code validation tests of Appendix B, we see that

single passages of Fomalhaut B that are below ∼400 au often excite

Fomalhaut A’s belt to eccentricities comparable to or greater than

the observed value (∼0.1). Thus, this simulation set supports the

idea that Fomalhaut A’s eccentric belt may be an effect of Fomalhaut

B’s perturbations.
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Simulations of the Fomalhaut system 477

Figure 3. The cumulative distribution of the minimum periastron passage for Fomalhaut B attained in each of our 2000 simulated systems is shown with the

solid black line. The minimum periastron values for Fomalhaut C are also shown (dotted) as well as the initial periastron values of Fomalhaut B (dashed).

3.3 Belt morphologies

3.3.1 Observed morphology

Using new ALMA observations of the belt around Fomalhaut A

combined with the expected dust particle locations for a given

underlying orbital distribution, MacGregor et al. (2017) build a

best-fitting model for the distribution of orbits found in the belt.

Working under the assumption that the belt is shaped by a planetary

perturber, the orbital eccentricities and arguments of pericentre are

composed of a forced component (associated with the forcing from

the planet) and a free component (e.g. Murray & Dermott 1999). In

the MacGregor et al. (2017) model, the forced components all have

a singular value for the eccentricity and argument of pericentre, and

these components account for the coherent elliptical shape of the

belt. Meanwhile, the free components are also given a fixed eccen-

tricity value but have randomly distributed arguments of pericentre.

The free components effectively result in a scatter in both the true

orbital eccentricities and the degree of apsidal alignment when they

are added to the forced component. If the free eccentricity is much

smaller than the forced, then the ring will be perfectly apsidally

aligned with very sharp edges. On the other hand, if the free eccen-

tricity is much larger, the belt’s boundaries will be less distinct and

its shape will average to a circle. MacGregor et al. (2017) find that

the best-fitting model to ALMA data requires a forced eccentricity

of 0.12 ± 0.01 and a smaller free eccentricity of 0.06 ± 0.04.

The modelling of a forced and free eccentricity is tied to the

idea that the ring’s morphology is shaped by constant perturbations

from a planet on a fixed orbit. Meanwhile, we expect the belts in

our simulations to be altered by impulse-like periastron passages of

stellar companions on highly variable near-parabolic orbits. Thus,

the forced/free idealization is not very applicable to our scenario.

Nonetheless, this best-fitting model of MacGregor et al. (2017)

predicts the spread of eccentricities and arguments of pericentre (as

well as longitudes of pericentre if the bodies are nearly coplanar) to

be expected in the observed disc, and these are properties we wish

to study and compare in our simulations.

To estimate the best-fitting model’s expected spread in eccen-

tricity and longitude of pericentre, we calculate these values while

varying the forced eccentricity and free eccentricity across the un-

certainty of the best-fitting model of MacGregor et al. (2017). In

Fig. 4(A), we plot the expected ratio of the standard deviation of

eccentricity to the median eccentricity against different assumed

combinations of free and forced eccentricity predicted by the best-

fitting model. This ratio will be lowest when the free eccentricity

is at a minimum and the forced is at a maximum, and it will be

highest when the free eccentricity is at a maximum and forced is at

a minimum. From this plot we see that the best-fitting belt model

of MacGregor et al. (2017) predicts a belt with a ratio of standard

deviation in eccentricity to median eccentricity between 0.11 and

0.43.

We can also study how different combinations of free and forced

eccentricity will affect the degree of apsidal alignment seen in the

best-fitting model of the belt. In Fig. 4(B), we plot the standard devi-

ation in the longitude of pericentre as a function of the combination

of free and forced eccentricity employed in the best-fitting model

of MacGregor et al. (2017). (We also assume a fixed longitude of

ascending node, which would be the case for a near coplanar belt.)

As can be seen, when forced eccentricity is maximized and free

eccentricity is minimized there is a standard deviation of just 6.◦2,

indicating apsidal alignment is strongest. The situation is reversed

when forced eccentricity is minimized and free is maximized. In

this case, the standard deviation is 43◦, indicating weaker alignment.

Thus, belts in which the standard deviation of the orbital longitude

of ascending node is between 6 and 43◦ provide an acceptable match

to the best-fitting model of the observed belt of Fomalhaut A.

3.3.2 Simulated morphologies

Our initial set of 2000 simulations only contains the Fomalhaut

stellar companions and does not contain any belt particles. To si-

multaneously evolve a configuration of belt particles significantly

adds to the simulations’ computational expense, so we choose to
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478 N. A. Kaib, E. B. White and A. Izidoro

Figure 4. (A) The ratio of the standard deviation of the belt eccentricities to the median belt eccentricity as a function of the observed belt’s free/forced

eccentricity specified along the x-axes according to the best-fitting belt model of MacGregor et al. (2017). (B) The standard deviation of the longitudes of

pericentre as a function of the observed belt’s free/forced eccentricity specified along the x-axes according to the best-fitting belt model of MacGregor et al.

(2017).

do this only for simulations that yield stellar configurations consis-

tent with the observed present-day system. That is, after our initial

2000 simulations are run for 500 Myr, we select any systems where

the final separation between Fomalhaut A and B is ±50 per cent of

5.74 × 104 au and the final separation of Fomalhaut A and C is

±50 per cent of 1.58 × 105 au. These simulations are then rerun for

500 Myr with a disc of nearly circular, coplanar massless test parti-

cles around Fomalhaut A. In total we repeated 135 (6.8 per cent) of

our simulations.

At the end of these simulations, we examine the orbital distribu-

tions seen in our 135 different Fomalhaut A belts. In Fig. 5 we plot

the cumulative distribution of the 135 median belt eccentricities that

we find. We see a distinct ‘knee’ in this distribution around a me-

dian eccentricity of 0.04. Roughly 75 per cent of our simulated belts

have median eccentricities between 0 and 0.04, and the remaining

25 per cent have eccentricities between 0.04 and 1.

Such a distribution makes sense when we again consider Figs 3

and B6 as well as the fact that ∼25 per cent of our systems expe-

rience at least one encounter between Fomalhaut A and B below

400 au. Thus, this remaining quarter of simulations represent the

systems whose belts are significantly perturbed by one or more

periastron passages of Fomalhaut B. Among these systems, the dis-

tribution of eccentricities between 0.04 and 1 is nearly flat. Thus,

system histories that involve close encounters between Fomalhaut

A and B are just as likely to yield a belt with an eccentricity of 0.1

as they are to yield a belt eccentricity of 0.8.

On the surface, this result is very encouraging with respect to

the hypothesis that Fomalhaut B has driven the eccentric shape of

Fomalhaut A’s belt. Indeed, when we isolate the eight systems with

median eccentricities between 0.05 and 0.25 (those most compara-

ble to the observed belt’s eccentricity of 0.11) we find cases where

the observed belt morphology is very closely matched. Perhaps the

closest match is shown in Fig. 6. In this case, Fomalhaut B is already

started on a very eccentric orbit, and its initial periastron is 830 au.

For the first 90 Myr, Fomalhaut B’s periastron begins slowly moving

outward. This first set of many distant periastron passages drives

the median eccentricity of Fomalhaut A’s belt to ∼0.03. However,

at 90 Myr Fomalhaut B and C undergo a close encounter, which

drives B’s periastron back into ∼850 au. In addition, the encounter

reorients B’s orbital inclination from nearly retrograde to nearly

polar relative to the plane of Fomalhaut A’s belt. In this new ori-

entation, B’s periastron passages have a stronger effect on the belt
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Simulations of the Fomalhaut system 479

Figure 5. Cumulative distribution of the median eccentricity of each of our 135 Fomalhaut A belts after 500 Myr of evolution.

of A, and the belt’s median eccentricity is driven up more rapidly.

As the Galactic tide slowly pulls the periastron of B away from

A over the last 500 Myr, the perturbing strength of B’s periastron

passages slowly diminishes. This very extended sequence of moder-

ately close periastron passage yields a final median belt eccentricity

of 0.15.

However, replicating the observed features of the Fomalhaut A

belt requires more than just generating a median eccentricity that

matches the observed belt’s eccentricity. We have also seen in the

previous section that the best fit to ALMA observations of the belt

suggests that the standard deviation of the belt’s eccentricity should

be below ∼43 per cent of the median eccentricity. In Fig. 6(B) we

also plot how the standard deviation of the belt evolves with time,

and we see it is 0.024 at the end of the simulation, or just 16 per cent

of the median eccentricity of 0.15.

In addition, the individual orbits of Fomalhaut A’s belt must also

be apsidally aligned in order for the belt to take a coherent ellip-

tical shape. The best fit of MacGregor et al. (2017) suggests that

the standard deviation of the longitude of pericentre should be be-

tween 6 and 43◦. We test for this requirement in Fig. 6(C) where

we plot the standard deviation of all the longitudes of pericentre

(as well as the median value) as a function of time. (These are

calculated relative to the belt’s mean orbital plane.) For a uniform

distribution of longitudes between 0 and 360◦ we expect a standard

deviation of ∼104◦ and, indeed, our belt initially has a standard

deviation of 106◦, consistent with the random distribution of lon-

gitudes we assign it initially. However, after just a few periastron

passages perturbations from Fomalhaut B have apsidally aligned

the belt’s orbits, and the belt finishes the simulation with a standard

deviation in longitude of pericentre of only 0.◦16. Thus, this system

is actually much more apsidally aligned than the real system! It is

not clear that this should be considered a failure, for we will see

that our simulated belts fail to have the observed degree of apsidal

alignment more often than not.

Finally, the real belt of Fomalhaut A must have a dynamically cold

distribution of orbital inclinations. Observations have constrained

the belt objects’ mutual inclinations to be �1◦ (Boley et al. 2012).

In Fig. 6(D), we plot how the standard deviation of the belt’s incli-

nations (relative to its mean plane) vary with time. We see that this

belt begins with a very small inclination dispersion as specified by

our initial conditions. As Fomalhaut B’s periastron passages excite

the belt’s eccentricity, they also excite its inclinations. However,

this excitation is modest. At the end of the simulation, the belt’s

inclinations still have a standard deviation of just below 1◦, which

is again consistent with observations.

Although the system in Fig. 6 provides an excellent match to the

observed Fomalhaut system, the stellar orbital evolution exhibited

here is rather uncommon. In this particular simulation, Fomalhaut

B begins with a small periastron, and it slowly drifts away from

Fomalhaut A over hundreds of Myr. Moreover, instead of exciting

the belt’s eccentricity with one or a handful of very close (�400 au)

periastron passages, Fomalhaut B drives up the belt’s eccentricity

through many moderately close (∼1000 au) periastron passages.

It is therefore instructive to study a simulation that excites Fomal-

haut A’s belt through a smaller number of more powerful periastron

passages. One such example is shown in Fig. 7. In this system,

Fomalhaut B begins on an orbit with a periastron of 6300 au. As a

result, Fomalhaut A’s belt remains nearly circular for the first 100–

200 Myr of the simulation (see Fig. 7B). It is not until interactions

between Fomalhaut B and C drive B’s periastron down to 460 au at

t = 160 Myr that the belt’s eccentricity is excited to 0.05. It remains

near this value for about 100 Myr until B’s periastron is then driven

down to 220 au. This periastron passage is then powerful enough

to drive the belt’s eccentricity up to 0.21. The Galactic tide then

steadily pulls Fomalhaut B’s periastron out to tens of thousands of

au, and the belt’s eccentricity is largely unchanged after this.

One immediately notices in Fig. 7(B) that this simulated belt has

a much larger eccentricity dispersion than the one shown in Fig. 6.

At t = 500 Myr, the eccentricity standard deviation is 0.12, or over

half the value of the median eccentricity. Thus, this simulation fails

to produce a belt where the eccentricity dispersion is much less than

the typical eccentricity.

It also likely fails with respect to apsidal alignment. In Fig. 7(C),

we once again plot the standard deviation in the belt’s longitudes of
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(A)

(B)

(C)

(D)

Figure 6. (A) The separation between Fomalhaut A and B (solid line)

as well as between Fomalhaut A and C (dotted line) is plotted against

time for one system. The exact values of each periastron passage inside of

15000 au are marked with circular data points. (B) Median eccentricity of

Fomalhaut A’s belt as a function of time (solid line). Dashed lines mark

the standard deviation of eccentricity values about the median value. (C)

Median longitude of pericentre of Fomalhaut A’s belt as a function of time

(solid line). Dashed lines mark the standard deviation of longitudes about the

median longitude. (D) Standard deviation of the orbital inclinations within

Fomalhaut A’s belt as a function of time.

pericentre. Although the standard deviation falls by roughly half to

∼48◦ over the first 160 Myr, the first very close periastron passages

in the simulation strongly degrade the alignment, and the belt fin-

ishes with a standard deviation of 81◦, substantially larger than the

range predicted by the observations of MacGregor et al. (2017).

Finally, while not as striking as the eccentricity dispersion and ap-

sidal misalignment, this belt is also less coplanar than the observed

system. Fig. 7(D) shows that the belt maintains a very coplanar con-

figuration until t 	 270 Myr. At this point the very close periastron

passages of Fomalhaut B increase the spread of inclinations in the

belt, so that the standard deviation is above 3◦ at the end of the

simulation.

(A)

(B)

(C)

(D)

Figure 7. Panels, lines and symbols are the same as the previous figure

but for a different simulation. In panel A, exact periastron passage values

of Fomalhaut C that are within 15 000 au of Fomalhaut A are marked with

diamonds.

Anecdotally, Fig. 7 suggests that belts excited by a handful of very

close periastron passages may possess a much higher eccentricity

dispersion than that inferred by observations. Fig. 8 confirms this.

Here, we show each belt’s eccentricity as a function of the minimum

periastron passage distance Fomalhaut B attained in the simulation.

(None of the systems where Fomalhaut B’s periastron always stayed

above 103 au yielded significantly excited belts.) We see here that

our simulations can be split almost perfectly between those where

Fomalhaut B passed within 400 au of Fomalhaut A and those where

it did not. In simulations with a periastron passage inside 400 au,

there is only one belt that managed to retain a median eccentricity

below 0.05. In contrast, all but 2 belts have median eccentricities

below 0.05 if there is no periastron passage within 400 au (the

evolution of one of which is shown in Fig. 6).

In Fig. 8, we see that a very close periastron passage of Fo-

malhaut B within 400 au is by far the most common way to ex-

cite the eccentricities within Fomalhaut A’s belt. One of the only
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Simulations of the Fomalhaut system 481

Figure 8. The eccentricity of each belt of Fomalhaut A at t = 500 Myr is plotted against the minimum periastron passage of Fomalhaut B in each simulation.

Data points mark the median eccentricity, while error bars mark each belt’s standard deviation.

exceptions to this is the simulation from Fig. 6 that has a minimum

periastron passage of ∼750 au. Examining the error bars in Fig. 8,

we also see that periastron passages inside 400 au greatly increase

the standard deviation of eccentricities within the belt as well. Al-

though close periastron passages of Fomalhaut B are not unusual

and they can significantly excite eccentricities within Fomalhaut

A’s belt, they nearly always leave the belt with a large spread of

eccentricities.

This is further borne out in Fig. 9(A). Here we see that belts

with median eccentricities near the observed value usually have a

standard deviation within a factor of ∼2 of the median. Smaller

ratios of standard deviation to the median value do exist, but they

typically involve belts that are nearly circular (e < .05) or belts that

are extremely eccentric (e � 0.6).

However, even though close periastron passages of Fomalhaut

B significantly excite the spread of eccentricities, matches to the

observed belt may still be attained. Out of our eight simulated belts

with the most promising median eccentricities (0.05 < e < 0.25),

we find two belts with eccentricity spreads comparable to the ob-

served belt. One is the simulation detailed in Fig. 6, and the other

is a belt whose ratio of eccentricity standard deviation to median

eccentricity is 0.43, right at the upper limit predicted in the best-

fitting model of MacGregor et al. (2017). Unlike our simulation from

Fig. 6, this system does experience very close periastron passages

of Fomalhaut B. Locating this belt in Fig. 8 (median eccentricity

of 0.23), we see that Fomalhaut B’s minimum periastron passage is

360 au. Thus, it is possible to produce a belt via strong perturba-

tions from Fomalhaut B whose eccentricity spread is similar to the

observed belt.

In Fig. 9(B) we see that, more often than not, very close periastron

passages of Fomalhaut B yield a belt that is less apsidally aligned

than the observed belt. Nevertheless, if we again only study the

eight belts with median eccentricities between 0.05 and 0.25, we

find that two of them are at least as apsidally aligned as the observed

belt. Moreover, these are the same two belts that provided the best

matches to the observed belt’s eccentricity dispersion.

In Fig. 9(C) we look at the degree of coplanarity in all of our simu-

lated belts. Unlike apsidal alignment, our simulated belts are largely

coplanar for median eccentricities near the observed eccentricity.

Although there are belts with standard deviations in inclination

of 10–50◦ these almost all occur when the median eccentricity is

driven above 0.25. For the eight cases most similar to the observed

eccentricity (0.05 < e < 0.25), we only have two simulated belts

with an inclination standard deviation above 2◦. Thus, the observed

belt’s degree of coplanarity seems to be a relatively easy feature to

replicate in our simulations.

Finally, while it is not obvious how perturbations from Fomal-

haut B could generate the observed belt’s sharp edges, these sharp

edges must be able to survive close periastron passages of Foma-

lhaut B for our mechanism to be viable. We study changes to the

belt’s edges in Fig. 9(D). Here, we compare the range of semimajor

axes that enclose the middle 80 per cent of all ring particles at the

beginning of each simulation with this range of semimajor axes at

the end of each simulation. We see that for belts that have only been

moderately excited to median eccentricities below ∼0.2, this range

of semimajor axes typically does not change much throughout a

simulation. However, perturbations driving the median eccentricity

above ∼0.2 typically also cause a dramatic diffusion in the range of

semimajor axes confining the belt. Typically, this range increases

by at least a couple of hundred per cent. It should be noted that

our two best matches to the observed belt in terms of eccentricity

dispersion and apsidal alignment are also consistent with the narrow

semimajor axis confinement of Fomalhaut A’s belt. Over the course

of 500 Myr of evolution the semimajor axes confining the middle

80 per cent of these rings orbits grow by just 1–2 per cent in each

simulation. Thus, these two simulations satisfy every major orbital

constraint given by observations of the real belt.

3.4 Distinguishing scenarios

Because our work shows it is possible for a low periastron passage of

Fomalhaut B to generate the morphology of Fomalhaut A’s belt, we
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(A)

(B)

(C)

(D)

Figure 9. (A) Ratio of the eccentricity standard deviation to the median

eccentricity versus the median eccentricity of each of our belts around

Fomalhaut A at t = 500 Myr. Shaded area marks the range of ratio

values corresponding to the best fit to ALMA observations of Fomal-

haut’s belt (MacGregor et al. 2017). (B) Standard deviation of the longi-

tudes of pericentre for each Fomalhaut A belt plotted against its median

eccentricity. Shaded area marks the range of standard deviation values

corresponding to the best fit to ALMA observations of Fomalhaut’s belt

(MacGregor et al. 2017). (C) Standard deviation of the orbital inclinations

for each Fomalhaut A belt plotted against its median eccentricity. (D) Ratio

of the semimajor axis range encompassing the middle 80 per cent of belt

particles at the end of each simulation to the beginning of each simulation.

now turn our attention towards the differences between the various

scenarios invoked in the literature to explain the belt’s morphology.

Although perturbations from nearby planets can explain the mor-

phology, a definitive planetary object has yet to be detected around

Fomalhaut A. Clearly, if a planet or planets are detected on orbits

consistent with the driving of an eccentric belt, this explanation for

the belt morphology becomes the favoured one.

To date, only our work here and that of Shannon et al. (2014)

explore the possibility that the belt morphology is a consequence of

perturbations from Fomalhaut A’s stellar companions. The main dif-

ference between these two mechanisms is that Shannon et al. (2014)

predict that the belt’s morphology is generated during a reshuffling

of the stellar companion hierarchy that usually results in Fomalhaut

C’s ejection from the system. Meanwhile, in our work the belt’s

eccentricity is nearly always attained when galactic perturbations

drive the periastron of Fomalhaut B to very low values. Although

our stellar systems can also go unstable, this is not a requirement by

any means. This can be seen when we look at the recent dynamical

histories of our systems whose final stellar separations are within

±50 per cent of the observed separations. In ∼80 per cent of these

systems, the last apastron passage of Fomalhaut B with respect to

Fomalhaut A is smaller than the last periastron passage of Foma-

lhaut C with respect to Fomalhaut A. This indicates that most of

our systems that match the observed stellar separations have non-

crossing stellar orbits, which we take as a proxy for systems where

stars B and C do not strongly interact. On the other hand, Shan-

non et al. (2014) report that less than 20 per cent of their matching

systems finish with Fomalhaut B and C on non-interacting orbits.

Thus, a very precise measurement of the stellar companions’ veloc-

ities may be one way to help distinguish our scenario from that of

Shannon et al. (2014).

In addition, the degree of apsidal alignment may be another key

to distinguishing between a disc morphology generated by close

periastron passages of Fomalhaut B (the work presented here) and

the stellar instability process described in Shannon et al. (2014). In

our work, we find that nearly all of our eccentric belts have a noisy

apsidal alignment. Out of all of our simulated belts with median

eccentricities above 0.05, we only find one case whose standard

deviation in longitude of pericentre is below 1◦. Meanwhile, an

examination of the Shannon et al. (2014) results finds that they

predict standard deviations near 0 unless the median belt eccentricity

exceeds ∼0.3. If future observations rule out a standard deviation

in longitude of pericentre of 0, this would favour our scenario. On

the other hand, an extremely aligned belt is easier to produce in the

Shannon et al. (2014) mechanism.

One final potential way to differentiate between our mechanism

and that of Shannon et al. (2014) involves the disc of Fomalhaut C.

Because star C is perturbing the Fomalhaut A belt in the Shannon

et al. (2014) case, star C must pass near star A. Such close passages

are very likely to excite the eccentricities of bodies in the Fomalhaut

C disc. Meanwhile, in our mechanism there is no requirement for

star C to play a substantial dynamical role, and less than 20 per cent

of our system histories have star C pass within 2000 au of star A.

If future observations reveal an eccentric disc about Fomalhaut C,

this would favour the Shannon et al. (2014) mechanism over ours.

All of the distinctions between our mechanism and that of Shan-

non et al. (2014) that are discussed above rely on differing general

tendencies of the two mechanisms rather than phenomena that are

prohibited in one and constantly observed in the other. Thus, to

confidently differentiate between these two mechanisms likely re-

quires acquiring a combination of new observational constraints on

the Fomalhaut system.

4 C O N C L U S I O N S

In this work, we construct a new symplectic integration algorithm

that can accurately and efficiently model the orbital dynamics of a

planetary system as it evolves within a stellar system or three or

more stars. Using this code, we perform 2000 simulations of the

stellar dynamical evolution of the Fomalhaut triple star system as it

has been perturbed by its local galactic environment over the past

500 Myr. For the 135 dynamical histories that yield stellar configu-

rations similar to the system’s observed state, we then simulate the

evolution of a belt of small planetesimals about Fomalhaut A as the

stellar system progresses through its dynamical evolution.

From the results of these simulations we can make a number

of conclusions. First, present-day separations of Fomalhaut A, B,

and C could have been maintained over the system’s ∼500-Myr

history. Shannon et al. (2014) suggest that the currently observed
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Simulations of the Fomalhaut system 483

state of Fomalhaut could be a transition phase as Fomalhaut C is

being ejected from the stellar system. However, when we begin our

simulations with stellar orbits that are consistent with the modern

separations, we find that after 500 Myr of evolution, ∼7 per cent

of our systems still have separations comparable to the observed

values. This fraction of systems is substantially higher than that

of Shannon et al. (2014). Moreover, over half of our systems have

possessed stellar separations consistent with the observed values at

some point during their final 100 Myr of integration. Thus, we find

it very plausible that the typical stellar separations and hierarchy of

Fomalhaut have not changed markedly over the system’s lifetime.

Our finding that many initial states can remain stable for the

age of Fomalhaut is not obvious. Because the stellar separations of

Fomalhaut are ∼104−5 au, the stellar orbits are strongly affected by

the Galactic tide as well as other passing field stars. As a result,

the stellar eccentricities and inclinations are continually changing.

This often can lead to close encounters between stellar companions

as they pass through phases of very low periastron. It is nearly

inevitable that Fomalhaut B and C make at least one close periastron

passage of Fomalhaut A during the course of 500 Myr of evolution.

The median values for the minimum periastron passages of B and

C with respect to Fomalhaut A are 2500 and 9800 au, respectively.

Such periastron passages can significantly alter the morphology

of a belt of planetesimals in orbit around Fomalhaut A. If we begin

with a nearly circular and coplanar belt positioned at the distance

of Fomalhaut A’s observed belt, we find that periastron passages

of Fomalhaut B commonly excite the planetesimals’ orbital eccen-

tricities. The minimum periastron passage typically necessary for

significant excitation is ∼400 au. If this is attained, eccentricities

comparable to or well in excess of the observed belt’s eccentricity

are nearly always attained. Such close periastron passages occur in

about 1/4 of our simulated systems.

Often times, the eccentric belts generated in our simulations have

a spread of orbital eccentricities larger than that inferred by observa-

tions of Fomalhaut A’s real belt (MacGregor et al. 2017). Similarly,

our simulated belts are typically less apsidally aligned than the ob-

served belt. Nevertheless, if we restrict our analysis to the eight

simulated belts with median eccentricities most comparable to the

observed belt eccentricity, we find that 25 per cent of them have

eccentricity dispersions consistent with the observed belts and that

these systems are at least as apsidally aligned as the observed belt.

Moreover, these simulated belts have the same degree of coplanarity

and semimajor axis confinement of the observed belt, constraints

that we found are more regularly replicated.

Out of our 135 systems that finish with the observed stellar sep-

arations, only two also fully replicate all the observed features of

Fomalhaut A’s belt. However, this result should not be used to dis-

miss stellar perturbations as the cause of the observed belt’s mor-

phology. In our simulated systems, there is an ∼25 per cent chance

that Fomalhaut B’s periastron passages will transform Fomalhaut

A’s belt into an eccentric state. If this occurs, the diversity of out-

comes is very large, and the observed properties of Fomalhaut A’s

belt fall well within the spectrum of belt morphologies that we

predict.

On the other hand, one also cannot confidently state that pertur-

bations from Fomalhaut B are in fact responsible for the observed

morphology of Fomalhaut A’s belt. It is well known that such an

eccentric belt can be produced from the secular forcing of planets in

orbit about Fomalhaut A (e.g. Wyatt et al. 1999). Nevertheless, it is

not known whether such planets reside in this system. If future ob-

servations of Fomalhaut A rule out the existence of planets capable

of generating its belt’s morphology, the most plausible explanation

for Fomalhaut A’s eccentric belt is close periastron passages of Fo-

malhaut B, which has been definitively confirmed as a member of

the system (Mamajek 2012).

More broadly speaking, features or asymmetries of planetary

belts or discs are often employed as a way to infer the presence of one

or more planets within a system (Wyatt et al. 1999). This approach

has already predicted the existence of planets before their direct

detection (e.g. Lagrange et al. 2010). Nevertheless, our work here

shows that very distant stellar companions can, counterintuitively,

often deliver strong perturbations to these structures that can mimic

the signatures of planets.
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A P P E N D I X A : C O N J U G AT E M O M E N TA

In this Appendix, we use a generating function to derive the canonical conjugate momenta of the coordinates we employ in our new algorithm.

The generating function used in Chambers et al. (2002) to relate their integrator coordinates and conjugate momenta is

Fg = − pA ·

(

XA −
mB

mA + mB +
∑

j mj

XB −

∑

j mj Xj

mA +
∑

j mj

)

−
∑

i

pi ·

(

X i + XA +
mB

mA + mB +
∑

j mj

XB −

∑

j mj Xj

mA +
∑

j mj

)

− pB ·

(

XA +
mA +

∑

j mj

mA + mB +
∑

j mj

XB

)

. (A1)

To find our new algorithm’s coordinate conjugate momentum pairs, we make a simple modification to the Chambers et al. (2002) function as

follows:

Fg = − pA ·

⎛

⎜

⎜

⎜

⎝

XA −
mB

mA + mB +
NP
∑

j=1

mj

XB −

NP
∑

j=1

mj Xj

mA +
NP
∑

j=1

mj

⎞

⎟

⎟

⎟

⎠

−

NP
∑

i=1

pi ·

⎛

⎜

⎜

⎜

⎝

X i + XA +
mB

mA + mB +
NP
∑

j=1

mj

XB −

NP
∑

j=1

mj Xj

mA +
NP
∑

j+1

mj

⎞

⎟

⎟

⎟

⎠

− pB ·

⎛

⎜

⎜

⎜

⎝

XA +

mA +
NP
∑

j=1

mj

mA + mB +
NP
∑

j=1

mj

XB

⎞

⎟

⎟

⎟

⎠

−

NP+NS
∑

i=NP+1

pi · X i . (A2)

To demonstrate that this generating function yields the coordinates and momenta given in equations (3) and (4), we first invert equation (3)

to express the inertial coordinates in terms of our new algorithm’s coordinates:

xA = XA −

NP
∑

i=1

mi X i

mA +
NP
∑

i=1

mi

−
mB XB

mA + mB +
NP
∑

i=1

mi

,
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xi = X i + XA −

NP
∑

i=1

mi X i

mA +
NP
∑

i=1

mi

−
mB XB

mA + mB +
NP
∑

i=1

mi

for 1 ≤ i ≤ NP,

xB = XA +

mA +
NP
∑

i=1

mi

mA + mB +
NP
∑

i=1

mi

XB ,

xi = X i for NP < i ≤ NP + NS. (A3)

Using the generating function in equation (A2), we see that our original, inertial coordinates are recovered through

xi = −
∂Fg

∂px,i

. (A4)

Similarly, the conjugate momenta to the coordinates employed in our new algorithm are given by

Px,i = −
∂Fg

∂Xi

, (A5)

which are detailed in equation (4) of the main paper.

A P P E N D I X B : T E S T I N G O F A L G O R I T H M

It is important to understand the accuracy limits of our new algorithm. Like other symplectic codes, we expect our simulations to have a small,

bounded numerical error under most circumstances. However, we anticipate the quality of our numerical integrations will be degraded during

certain instances. Some of these instances are well studied and result from the inability of democratic heliocentric coordinates to accurately

model close pericentre passages between planetary objects and the primary star (Levison & Duncan 2000). In these cases, Hjump becomes

large relative to HKep and can no longer be treated as a perturbation on a near Keplerian trajectory.

However, other cases of numerical degradation are unique to our new algorithm. In particular, our code has no means of handling close

encounters between the secondary star and additional stars. When these two classes of bodies approach one another the second-to-last set of

terms in Hint becomes large and degrades the integration of the binary and the other star involved in the encounter. Another case of concern

involves close encounters between planetary bodies and either the secondary star or the additional stars. During these situations, the third and

fourth sets of terms in Hint can become large and degrade the integration of the bodies involved in the close encounter as well as other bodies’

integrations due to the presence of indirect accelerations in equations (9) and (10). Finally, close encounters between passing stars and the

primary star can cause the last term in Hint to greatly increase as well and degrade integration quality.

Thus, it is important to understand how closely objects of various classes can pass within one another before the quality of our simulations

is significantly compromised. Adequately testing our code is challenging because it is designed to model complex hierarchical systems whose

dynamics have no analytical solution to serve as a reference. However, we have settled upon simulating various manifestations of the circular

restricted three-body problem and monitoring the conservation of the Jacobi Constant. The problem is hierarchical in nature, just as our

system of interest, Fomalhaut, is.

With the Fomalhaut system in mind, we integrate 50 simulations of a three-body system consisting of a 1.92 M� primary (star A), a

0.73 M� secondary (star B) and a massless test body (star C, which can be thought of as a Fomalhaut C pseudo-analogue, as the restricted

three-body problem requires one nearly massless body). In our initial conditions, the secondary is placed in a circular orbit about the primary

with a semimajor axis of 500 au, while the test body has an initial semimajor axis of 1000 au, an eccentricity of 0.3 and a random inclination

relative to the secondary’s orbital plane. The test body’s initial orbit is chosen so that it will quickly undergo strong interactions with the

secondary. The initial separations of our bodies are much smaller than the separations in the Fomalhaut system. Again, this is done to ensure

that close encounters between the bodies occur regularly. Our 50 systems are integrated until the test body is ejected (r > 105 au and positive

energy with respect to the centre of mass). Since we do not know the true stellar orbits of the Fomalhaut system, and it may be in the process

of going unstable, it is important for us to accurately integrate such a system completely through an instability. In this set of simulations the

secondary star is integrated using the wide binary star coordinate scheme of Chambers et al. (2002), and the test body is integrated via T + V

in the inertial coordinate extension that we have designed.

In Fig. B1(A) the numerical error of our systems’ Jacobi constant is plotted against the minimum approach distance attained in each system

between the secondary star and the massless body. Here we see that there is a clear dependence of the degree to which the Jacobi Constant

is conserved on the closest encounter that the secondary has with the test body (tertiary). The Jacobi Constant error begins to significantly

increase for encounter distances below ∼20 au, and unfortunately, this represents 40 per cent of our simulated systems. In addition, we see

that there are other instances where the secondary and tertiary remain far from one another and the Jacobi Constant conservation is still poor.

In these cases the source of the error is a close encounter between the primary and the tertiary. Again, when the primary and tertiary pass

within ∼20 au of one another we find significant increases in numerical error.

Fig. B1(A) raises a conundrum. Although our code seems accurate as long as stellar companions remain far from one another, encounters

between the secondary and tertiary are common, and we have no special routine built into our code to handle such encounters. The reason for

this is that the Hamiltonian partition we have chosen assumes that the secondary is on a near-Keplerian orbit about the primary and its planets,

while this assumption is dropped for the tertiary’s trajectory. This approach enables us to accurately integrate the secondary’s orbit to lower
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486 N. A. Kaib, E. B. White and A. Izidoro

(A)

(B)

(C)

Figure B1. (A) Fractional change in Jacobi Constant between the beginning and end of 50 simulations of a 1.92 M� star (body A), a 0.78 M� star (body B)

and a massless test body (body C). This is plotted against the minimum approach distance of bodies B and C. The 0.78 M� star is integrated with the binary

coordinate scheme of Chambers et al. (2002), while the test body is integrated in inertial coordinates. (B) Fractional change in Jacobi Constant versus the

minimum approach distance of bodies B and C. This is for the same 50 simulations from panel A, except they are rerun with both bodies B and C integrated in

inertial coordinates. (C) Fractional change in Jacobi Constant versus the minimum approach distance of bodies A and C for the same simulations from panel B.

pericentre than other stars, but as we see in Fig. B1(A) close encounters between the primary and its stellar companions are less common than

encounters between the two orbiting stars. Thus, our integrations may be improved if we abandon the assumption of near-Keplerian motion

for the secondary and treat it as another additional star. For this setup, the Hamiltonian described in equation (8) would have mB = 0 and

NS = 2.

With this in mind we reintegrate our 50 systems through dissolution with the secondary also handled with a simple T + V integration.

Again, we plot the error in Jacobi Constant as a function of the minimum approach distance between the stars B and C in Fig. B1(B). This

time we see that numerical error has no dependence on this approach distance, since our code accurately handles close encounters between

these stars with a Bulirsch–Stoer routine. The remaining four simulations that have poor Jacobi Constant conservation all have encounters

between A and C inside 20 au. When we replot numerical error as a function of the closest approach distance between stars A and C in

Fig. B1(C), we see a clear dependence on this parameter. This particular source of error is less concerning to us because of the nature of our

particular study. We are interested in whether Fomalhaut A’s stellar companion has altered its debris belt. This belt, which sits over 100 au

from Fomalhaut A, would likely be obliterated if a stellar companion passed within 20 au of A. Although the accuracy of the integration is

MNRAS 473, 470–491 (2018)
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Simulations of the Fomalhaut system 487

(A)

(B)

Figure B2. (A) Fractional change in energy between the beginning and end of 50 simulations of a 1.92 M� star (body A), a 0.73 M� star (body B) and a

0.18 M� star (body C). This is plotted against the minimum approach distance of bodies A and C. Data points from simulations in which bodies B and C have

an approach within 20 au are filled. (B) Fractional change in angular momentum for the same set of simulations. Data points from simulations in which bodies

B and C have an approach within 20 au are again filled.

compromised after this periastron passage, we will not be particularly interested in the evolution of the system after this point. Thus, treating

the binary as just another additional star gives us an integration scheme that models Fomalhaut’s stellar dynamics well enough to study their

effects on Fomalhaut A’s belt.

Up to now, we have only measured the error in the conservation of the Jacobi Constant. We can also characterize our code’s conservation of

energy and angular momentum. To do this, we repeat our integrations one more time, except with star C having the actual mass of Fomalhaut

C of 0.18 M�. As with the previous set of integrations, both stars are integrated with a T + V scheme in inertial coordinates. The numerical

energy error and angular momentum error for these integrations are shown as a function of the closest approach distance between A and C

in Fig. B2. As with Jacobi Constant, we see that approaches between star A and C that are less than ∼20 au significantly increase the energy

error in our simulations. Although angular momentum error is degraded for the closest approaches between A and C, it is still conserved to

better than 1 part in 109. We also expect that close approaches between stars A and B will increase numerical error, but we only have one

integration where A and B come within 20 au, and this system still has a fractional energy error of just 10−4.

While we have demonstrated that the stellar interactions of our new simulation code are accurate enough for our purposes, we have yet to

study the error associated with close approaches between stars and planetary bodies orbiting the primary. As with our stellar encounters study,

we again set up a version of the circular restricted three-body problem to characterize this error. In this setup, we place a 0.73 M� Star B in

a circular orbit with a semimajor axis of 150 au about Star A whose mass is set to 1.92 M�. Now we place one more test body on a circular

orbit at 120 au (near the position of Fomalhaut A’s ring), which we will still refer to as body C here. Unlike our prior simulations, body C

will now be integrated within democratic heliocentric coordinates using a mixed variable symplectic routine, while star B will be integrated

with a T + V approach within inertial coordinates. Because of its proximity to Star B, the orbit of C is inherently unstable, and during the

instability close approaches between B and C (as well as A and C) are likely to ensue, allowing us to study the numerical error associated

with such events.

MNRAS 473, 470–491 (2018)
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488 N. A. Kaib, E. B. White and A. Izidoro

Figure B3. Fractional change in Jacobi Constant between the beginning and end of 50 simulations of a 1.92 M� star (body A), a 0.78 M� star (body B) and

a massless test body (body C). This is plotted against the minimum approach distance of bodies B and C. The 0.78 M� star is integrated in inertial coordinates,

while the test body is integrated in democratic heliocentric coordinates. Simulations in which bodies A and C approach each other within 20 au are marked

with filled symbols.

We integrate 50 such systems until body C is ejected from each system. The error in Jacobi Constant of these systems is plotted against

the minimum BC approach distance in Fig. B3. As can be seen in this figure, close encounters between the secondary star (body B) and the

planetary object (body C) greatly increase the numerical error. For encounter distances below ∼20 au, the conservation of the Jacobi Constant

is severely degraded. On the other hand, close approaches between the primary (body A) and the planetary body do not seem to markedly

degrade Jacobi Constant conservation. This is presumably because body C is massless. Consequently, the democratic heliocentric coordinates

are equivalent to heliocentric coordinates, and Hjump is zero.

As with our study of the accuracy of stellar dynamics, we now repeat our set of 50 simulations one more time, again until the planetary

body (C) is ejected. In these reruns, the orbits of A, B and C are the same, but now body C is given a non-zero mass of 1 MJup. In our reruns,

we measure the conservation of energy and angular momentum. The results of these simulations are shown in Fig. B4. Just as with our Jacobi

Constant analysis, we see that close encounters between B and C within ∼20 au significantly degrade the conservation of energy. However,

we now also see that encounters between A and C also increase numerical error. From Fig. B4(A), it appears that energy conservation

becomes substantially worse if C passes within ∼6 au of A. Finally, in Fig. B4(B) we see that very close encounters between the secondary

star and planetary body can degrade the conservation of angular momentum, but the fractional error still remains below 10−10 for all of our

simulations.

To this point, we have characterized the accuracy of our code using unstable systems that dissolve on ∼Myr time-scales. This has enabled

us to quantify the error resulting from close encounters between bodies of various classes over short time-scales, but we have not studied

how our code behaves modelling stable systems over long time-scales. To do this, we assemble 50 systems of well-spaced bodies with a clear

hierarchy. For our stellar components, we again mimic the Fomalhaut system masses by having a 1.92 M� primary, a 0.73 M� secondary

and a 0.18 M� tertiary star. The secondary stars of our systems are placed on orbits with semimajor axes of 2000 au, eccentricities drawn

randomly between 0 and 0.1, and inclinations drawn randomly between 0 and 10◦. The tertiary stars of our systems are assigned similarly

drawn eccentricities and inclinations (about the centre-of-mass of the primary and secondary) and given semimajor axes of 20000 au. In

addition to the stellar bodies of this system, two planetary bodies are placed in orbit about the primary star. The first is a Jupiter-mass planet

on a circular orbit at 50 au, and the second is a Saturn-mass planet on a circular orbit 10 mutual Hill radii further from the primary at 92.8

au. Both planets are given inclinations between 0 and 1◦. Our T + V scheme within inertial coordinates is used to integrate the secondary and

tertiary stars, while a mixed variable symplectic routine in democratic heliocentric coordinates is used for the planetary integrations.

Our 50 systems are integrated for 500 Myr, and the final energy and angular momentum of each system is compared with its initial values.

The absolute fractional changes in energy and angular momentum are shown in Fig. B5. As can be seen, both quantities are conserved to a

very high degree in all of our systems. We have no systems where energy conservation is worse than one part in 107 and none where angular

momentum conservation is worse than one part in 1011.

Based on Figs B1–B5, we can conclude that the only significant source of error in our Fomalhaut simulations will be when stellar

companions pass within ∼20 au of the primary, when stellar companions pass within ∼20 au of a planetary body orbiting the primary or

when planetary bodies pass within ∼6 au of the primary. This enables our simulations to accurately determine whether Fomalhaut A’s stellar

companions could have distorted the shape of its debris belt. Because the ring orbits at over 100 au, if belt particles attain pericentres below 6

au, they will have eccentricities of well over 0.9. Meanwhile, the observed eccentricity of Fomalhaut’s belt is ∼0.1, so such highly eccentric

ring particles will not be considered matches to the system anyways.

One final way to quantify our code’s accuracy that is very relevant to our work here is to simulate the orbital excitation of a belt of

planetesimals as they are perturbed by stellar passages. To do this, we run a set of simulations modelling the evolution of 100 belt particles

as they are perturbed by a single stellar passage. The belt particles consist of massless bodies placed on near circular (e < 10−3), coplanar

(i < 1◦) orbits between 127 and 143 au around a primary with a mass of 1.92 M�. With this architecture in place, the system is subjected to

MNRAS 473, 470–491 (2018)
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Simulations of the Fomalhaut system 489

(A)

(B)

Figure B4. (A) Fractional change in energy between the beginning and end of 50 simulations of a 1.92 M� star (body A), a 0.73 M� star (body B) and a

1 MJup planetary object (body C). This is plotted against the minimum approach distance of bodies B and C. Data points from simulations in which bodies A

and C have an approach within 6 au are filled. (B) Fractional change in angular momentum for the same set of simulations. Data points from simulations in

which bodies A and C have an approach within 6 au are again filled.

a single flyby of a 0.73 M� star on a parabolic orbit with a random spatial orientation. A total of 50 different simulations of single flybys are

preformed at flyby distances of 100, 125, 150, 175, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800 and 2000 au.

In Fig. B6(A), we plot the final median eccentricity of the belt in each simulation as a function of the stellar passage distance. Here we

see that even for stellar passages at 200 au, most flybys result in the belt being perturbed to a more eccentric state than the observed one.

Because the radial extent of the belt is ∼50 au closer to the primary than the stellar passage distance, these types of encounters exclude the

possibility of significant numerical error due to a planetary body passing within 20 au of the 0.73 M� star. Thus, before numerical errors

become a possible issue in our simulations, the belt will have already been excited to an eccentricity comparable to or exceeding the observed

value. In our study of the Fomalhaut system, we are ultimately interested in the overall probability that the stellar companions can excite the

eccentricity of the belt. Whether this excitation yields a belt eccentricity of 0.1 or 0.35 is not as critical.

To verify the accuracy of the stellar passage simulations in Fig. B6(A), we repeat them one more time with a Bulirsch–Stoer integrator. In

Fig. B6(B), we compare the median belt eccentricities found in the Bulirsch–Stoer runs with the eccentricities found in the runs using our

symplectic code. We see that the difference in median eccentricity is well below 10−3 for any stellar flyby capable of exciting the belt to a state

comparable to its observed eccentricity. Even at flybys that yield eccentricities exceeding 0.5, the eccentricity error is still only ∼0.01–0.02 at

most. The simulations with these largest errors seem to correspond to stellar passages at or below 200 au, where the close encounters between

planetary bodies and stellar companions that yielded large errors in Figs B3 and B4 become possible. Even in these cases, 99 per cent of our

simulations have eccentricity differences below 0.01 when comparing the two different runs. Similarly, if we only select stellar passages that

yield eccentricities above the observed ring value (e > 0.15) we again find that the eccentricity difference in our two sets of runs is below

0.01 in 99 per cent of our systems. Thus, when our simulations predict that Fomalhaut B significantly excites the belt of Fomalhaut A, we can

trust that this is indeed the case.
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490 N. A. Kaib, E. B. White and A. Izidoro

Figure B5. Distribution of the fractional change in energy (solid) and angular momentum (dashed) over the course of 500-Myr integrations of 50 stable

systems consisting of a 1.92 M� primary star orbited by a Jupiter-mass planet, a Saturn-mass planet, a distant 0.73 M� stellar companion and an even more

distant 0.18 M� stellar companion.

In our simulations of the Fomalhaut system, it is also possible that Fomalhaut C is the star that excites the eccentricity of the Fomalhaut

A belt. To gauge the types of encounters necessary for this, we again perform 50 different simulations of single stellar flybys at distances of

100, 125, 150, 175, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800 and 2000 au. However, this time the stellar

mass used is that of Fomalhaut C, or 0.18 M�. The results of these simulations are shown in Fig. B6(C), where we see that single encounters

within at least 300 au are necessary to perturb the belt to its observed state. Even many encounters at 100 au do not excite the belt beyond its

observed eccentricity.

Once again, we also repeat our stellar passage simulations with a Bulirsch–Stoer integrator and examine the difference in predicted median

belt particle eccentricities for our two different integrations in Fig. B6(D). As with our other stellar passage experiments, we find that the

difference in predicted median belt eccentricity is typically small. In this case, the difference is always below 0.005. If we limit ourselves

to simulations with median eccentricities above 0.15, we find that the difference in predicted eccentricity is below 0.001 in 94 per cent of

our pairs of integrations. As with Fomalhaut B, our simulations should do an excellent job of flagging when Fomalhaut C does and does not

excite the eccentricity of the belt around Fomalhaut A.
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Simulations of the Fomalhaut system 491

(A)

(B)

(C)

(D)

Figure B6. (A) Ring particles on initially circular orbits are subjected to passages of a 0.73 M� star. The final median orbital eccentricity of ring particles is

plotted against the distance of the stellar passage to which they are subjected. Circular data points mark the results of individual stellar passages and horizontal

lines mark the ‘median of median values’ for each stellar passage distance. (B) Absolute difference between the median ring eccentricity predicted by our

symplectic integrations from panel A and that predicted by a Bulirsch–Stoer integration of the same stellar passage is plotted against the symplectic median

ring eccentricity for each one of our simulations. (C–D) Analogous plots to panels A–B, but for stellar passages involving a 0.18 M� star.
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